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Feedback control in coupled map lattices
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Recently, Paramanane@4 al.[Phys. Rev. 56, 239(1997] have reported the suppression of spatiotemporal
chaos using a feedback technique. We present analytic results for the same and compare with numerical results
presented in this work. We also suggest an improved method for stabilizing periodic solutions and achieving
target cluster states in a spatiotemporal sys{8h063-651%98)02806-2

PACS numbds): 05.45+b

Control of spatiotemporal systems is an important andty condition is simply that|f’(x)+ y|<1. However, it is
difficult problem which has attracted attention of late. One ofclear that the periodic orbit solution for a period higher than
the methods for control was propsed by Ott, Grebogi, andinity will not be the same as for the=0 case in the case of
Yorke (OGY) [1]. It requires reasonable knowlege of dy- Eq. (1) or (3). Consequentlyas also noted if6]), in the case
namics and is well suited for low-dimensional systems. Theof a periodic solution with periog, Xg,X, ... ,X,_4, the
other method is feedbadi,3] (see alsd4,5]) which does control does not go to zero asymptotically. A simple solution
not need it and is thus suitable for very large dimensionato this problem would be to drive the system as
systems.(Engineers have been using this method for quite
some time). In dynamical systems, achieving synchroniza- Xnt1=F(Xn) + (X0 =Xn—p) (4)
tion is often referred to as control. This happens since quite a - .
few times the synchronized state is indeed a desired state a&o‘z tzz?)laii(l)zr?(rﬁ)lé&mllarly, instead of Eq(3) we can have
working out the conditions for synchronization is tantamount
to the conditions for controlGood examples from an appli- Xns 1= F(X0) + y(X,—X,), (5)
cations point of view would be Josephson junction arrays
and synchronizing electrical circuits for secure communicawheren=kp+r, k is an integer, and €r<p—1. The sta-
tion.) Apart from that, from a control theory point of view bility conditions are|TIP=5f'(X;)+y|<1. Of course, one
these two problems turn out to be very simil@f. Coupled may choose to apply this feedback only rarely; e.g., one may
map lattices have been a prototypical toy model for spadrive the system as
tiotemporal systems. Methods which have been tried in this
context include pinning which basically gives a feedback to Xn+1= T (Xn) + ¥(Xn=X1) &1 0. ©®)
the system from the desired (_)rbi'g at p_eriodic_ally spaced sitefigre the stability condition changes and is given| BY(X,
[7]._Feedbaqk_has an appeal in h|gh-d|men5|c_)nal systems du@y)Hi"Z‘ff’(Xiﬂ <1. Thus one may choose to apply pertur-
to its simplicity. C.)f late, Paramanan_da, H|Idebrand, andbations only at those points on the orbit which have strongly
Eiswirth have S.tUd'ed coupled map Igttlce systgms with feecjéxpanding eigenvalues. Various states, which are on the
back and obtained some encouraging numerical rep8lts same orbit but differ in phase, do not remain equivalent in

In this work we will be presenting some analytic calculationSyis king of driving. Apart from the fact that control goes to
along similar Ilrjes. . . zero asymptotically, one more advantage is that the stabi-
. Let us consider a strqlghtforward case of a single MaRzed states are the periodic solutions of the functioand
with feedback. The equation is of the type not the altered states. The strategy in E@$.and (6) can
Xs 1= F (X)) + Y(Xy— Xy 1)- (1) help in getting rid of clus_tered statéwhich_ will be.deﬁne_d
later) in coupled map lattices. One more interesting point to

This is a two-dimensional system which we can express ae noted is that the above stability conditions do not ensure
(Xn41.%n) = F(Xny,Xn—1) = (F(X) + Y(Xn = Xn—1) , Xp) and that if a state were stable without feedback, it would stay

one can write the Jacobian at timas stable.(This prompts another possibility of using feedback to
increase chaog.
f'(x)+vy —vy Now let us consider the coupled map lattice system. Let
t= 1 0 ) 2 us consider the local feedback

The eigenvalues of this matrix give the stability constraints. x__,(i)=(1—e)f(x,(i))+ f[f(xn(i — 1)+ f(X,(i +1))]
We will see that in a spatially extended system, also, these 2

constraints stay, though some more conditions come in. For 1 N
the other functional form which is attempted, + | x,(i)— szl x,_1(j) | 7
Xn+1=F(Xp) + v(Xn—=Xp), 3

This is a N-dimensional system. We can writ&X(, 1,X;)
where X is a stable fixed pointf(Xg)=Xg], it remains a =G(X;,X;_1) where X;=(X;(1),x(2), ... X(N)). The
one-dimensional system. But it is easy to see that the stabiBacobian]; at timet is given by
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whereQy is anNX N matrix with all entries 01y is anN-dimensional matrix with all entries 1. The mate is given by

(1—e)f (x(1))+ v el2f" (x,(2)) 0 . €/2f (x,(N))
€2 (x,(1)) (1—e)f' ((2)+7y €l2f' (x(3)) 0
: : )
0 0 0 . €2 (x,(N))

€/2f" (x(1))

o
o

(I-ef (x(N))+y

We assume periodic boundary conditidd€)]. It is easy to We denote byL; the blocks corresponding to linearization
see that for the homogeneous solution the ma#jxis a  around the fixed point. The stability conditions will be given
circulant matrix[9,11]. It can be diagonalized by a Fourier by the eigenvalues of each of the blocks. It is interesting that
matrix F, the entries of which are independent of the matrixL y is the stability matrix for a single map. Thus if a single
being diagonalized. We also note that the maffixis also map could not be stabilized by feedback, the lattice cannot
circulant and thus diagonalizable by the same matrix. Thée stabilized by feedback. In all other blocks#(N),
identity matrix remains unaltered under a similarity transfor-B4(i,i)=0. Thus the stability conditions are given by the
mation under the Fourier matrix and so is the case @jth  eigenvalues of the matriA;. The eigenvalues oA, are
Thus the above matrix has fobéxX N blocks, all of which  bounded between (22¢€)f'(x;)+7y and f’'(x;)+7y. Thus
can be diagonalized by the Fourier matrix. Let us defihe for a fixed point the conditions are straightforward and ei-

=G~ 1J,G where genvalues of a single map with feedback linearized around a
fixed point should be within the unit circle in the complex
F O plane and(1—2¢€)f’(xg)+ y|<1 and|f’(xg)+ y|<1. One
G= 0 F/° (10 can easily check that the value at which stabilization is
achieved by Paramanandaal. is within the allowed range
It is easy to see that of ye(0.87,...,1) fore=0.08 andf(x)=1-1.81x% _
Let us try to understand the effect of global feedback. It is
<Ad Bd) defined in[6] as
U= , 11

. . 6 . .
_ , , , Xn+1(1) = (1= €)f (xa(i))+ S[Fxa(i = 1))+ f(xn(i +1))]
where each of the blocks is at-dimensional diagonal ma-

trix. Ay has elements Ay(l,1)=(1—¢€)f'(x)+ 7y 1 N 1 N
+ e cos@)f'(x) whereg,=27xI/N, =1, ... N. The matrix - iy— — i
B4 has element®8,4(N,N)=—1y, By(i,i)=0,i=1,2,...N Ty szl %(1) Ngl Xn=al) |- (19
—1. By a simple rearrangement of variables
In this case the analysis can be done in a similar way to the
xXi(1),%(2), ... Xi((N),X;—1(1),%X—1(2), . .. X—1(N)) above since the essential symmetries which faciliated the re-
duction of the problem of diagonalizing theNX 2N matrix
= 0e(1)Xe-1(1). Xe(2),%e-1(2), - . Xe(N),Xe-1(N)) to N matrices of size 2 are still there. It is easy to check that
in this caseA4(N,N)=f'(x(t))+ y which is the same as in
the case of local feedback. Howeverdy(l,1)=(1
—e)f’'(x;) +ef’'(x;) cos@) (I=1,... N—1) and they do
not depend ony. By(i,i)’'s (i=1, ... N) remain unchanged.
Thus there is no possibility of stabilizing the unstable fixed

the above matrix can be cast in a block diagonal forniNof
blocks of 2< 2 matrices. The required similarity transforma-
tion is easy to derive. Thus

La(D) 0 e 0 point with this feedback since one of the eigenval(ieghe
0 Lty ... 0 largeN limit) will approach f’(xg) for the synchronized
U= : ;| 12) fixed point. Thus it is not a surprise that Paramanatial.
0 0 Lo(t) are not able to stabilize the homogeous state starting with
PR N

arbitrary initial conditions. However, they do the following.
They reset the parameter to get a system in a synchronized
state. Later they reset the parameter back to the old value and
. . add control and say that applying control leads to a synchro-
L-(t)=(Ad(l 1) Byl ")> (13  Nized state. The reason why this works is that the evolution

: 1 o /) equations are such that if you start the system in a

where
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synchronized state, the system will stay synchronized. Now 1 TNz IO,
the question is why it goes to a fixed point which was pre-
viously unstable. The mode under consideration now is only
the homogeneous mode. Stability of this mode essentially 0.75 - (a) A
means that a single map can be stabilized by feedback. Thus
if an unstable fixed point of a single map can be stabilized by

feedback, one could go to a homogeneous fixed point state 0.5 .
starting from the synchronized initial condition. However, g,,(;)
one should note that starting with a small disturbance around

the homogeneous state it will not be possible to stabilize the 0.25 - .
system to a homogeneous unstable fixed point. Since a single
system can be stabilized with feedback fory

€(0.43,...,1) (fora=1.81), one can observe a homogene- 0¢ e & <
neous unstable fixed point in this regime with synchronized OO0 QOO0
initial conditions which is possible in numerical simulations. | , |
Now an interesting observation can be made. This could 10 20 30 40
be done because tidth block has a very different structure i
from the rest of the blocks. This gives a possibility that one 1

of the eigenvalues can be well separated from the rest. Thus

it may even be possible to have synchronous chaos in sys-

tems with feedback if one starts with a synchronized state. 0.75
The above analysis for a synchronized state can easily be

extended to the case when feedback is from a giatiene

steps before the current time step. Let the evolution be of the 05 L _

type

T
~
o
~
|

Tot (’L)

Xn+1(i)=(1—6)f(Xn(i))+g[f(xn(i—1)+f(xn(i+1))] 0.25 - _

S reY

QOO0
|

15 30
i

1 N
9 %0l = G2, Xa-p(D) |- (15 0

The stability conditions for a synchronized state can be sim-
ply derived using a similar technique as above. We will write
the final result. The Jacobian in the above case is the
PNXpN matrix which can be reduced % matrices of size FIG. 1. () The superposition of the asymptotic state of 20 ran-
pxp in block diagonal form as Eq12) except that each of gom initial conditions controlled to thé10(0),10(1),10(0),10(1)
the blocks now is @ X p matrix given by state.(b) Similar figure for control to th€15(0),15(1) state.

Ag(ii)
1
Li(t)= 0

o

0 By(i,i) t are bounded between {12¢)f’'(x;)+vy and f'(x,)+y.

0 0 Thus the conditions are that eigenvalues of a single map with
feedback linearized around fixed point should be within the

0 0 . (16)  unit circle in the complex plane and thitl—2¢€)f’(xg)

. + 9|<1 and|f’(xg) + y|<1. For higher periods, the stabil-

ity condition will be that eigenvalues of matricEF_,L;(t)

o o0 ... 1 0 be in the unit circle fori=1,... N as explained above.

. o i SinceBy(i,i)=0 fori# N, the eigenvalues are just a product

Linearization Is aroun.d. the homoggneous state at ime ¢ Aq(i,i)’s at successive times for blocks other thanNih

Thus the stability conditions will be given by the eigenvaluesy i

of the N product matrices given bly; =TI_,L;(t). This can In the Ref.[6], other structures apart from the homoge-

be done since the above form is obtained by similarity transneous state which are observed are clustered attractors.

formations which do not depend on individual matrices butThese are unsynchronized periodic attractors with period

their symmetries. It is interesting thiy, is the stability ma-  other than unity. There are two points to be ma@.The

trix for a single map. Thus if a single map could not be clustered state depends entirely on the initial conditions and

stabilized by feedback, the lattice cannot be stabilized by thevith a simple evolution rule as above one cannot target it to

feedback. The periods stabilized could pp@nd its harmon-  a desired clustered statéh) Control does not go to zero

ics. For example, applying feedback after ten iterates magsymptotically.

result in periods 1, 2, 5, or 10 if the control signal goes to Now if one wants to have a control mechanism, one

zero. If a fixed point, i.e., period unity, is stabilized, then theshould be able to suggest a way in which a desired clustered

conditions are very simple. In all the blocks other thay,  state can be achieved starting with random initial conditions

By(i,i)=0. Thus the stability conditions are given by the and also a mechanism to switch between different cluster

eigenvalues of the matrify. The eigenvalues oky at time  states. The physical origin of the clustered states is easy to

= O
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see. In the case of a single map, the dynamical evolution=(15(0),15(1); i.e., i=1,... k;=15 are in one cluster
leads to states periodic with periodp, say, andi=k;+1,...k,=30 are in the other cluster. We ap-
X0, X1, ... Xp—1. For zero couplingo" states are asymp- plied y=0.1, ¢é=0.08. Similarly we could stabilize the

totically possible for an assembly df maps(actually,p™*  (10(0),10(1),10(0),10(D)cluster for similar conditions. Of

after accounting fohfl phase degenefa@f course, for anon-  course, with high periods and states very near each other
zero coupling, alp™ states may neither exist nor be stable.targeting to a desired state is difficult. Figure)ishows a

But still it is reasonable to argue that a large number ofsyperposition of asymptotic states of 20 random initial con-
accesible states is possible. Thus unless the feedback is Wilfyions targeted to thé10(0),10(1),10(0),10(D)state. Fig-

a certain phase and breaks the symmetry, the systems Wilkg yp) shows the superposition of 20 random initial condi-
not get synchronized. Now if one is targeting to get the Clus'tions targeted to thé15(0),15(1) state

tered states and one knows the local dynamics, a strategy The procedure stated above can obviously be used for

similar to Eq.(5) can be tried. We drive sites in different .
o o coupled Henon maps or coupled Lozi maps or coupled area-
clusters with different phase but within the cluster the phase . : .
eserving maps which have an evolution of the type;

is maintained. One expects a desired cluster state to )

achieved this way if it exists and is stakjeith feedback =F(x 'Xt—l)_' The V‘_’h()l_e cz_ilculation also goes o_ver_to
Let us denotel= (ky(py),Ka(P2), . - . Ka(Py)) as a cluster coupled oscillatorgwith inertia). The above calculation is

state. wherek,+ko+---+k,=N and O<p;<p—1 for i for a synchroni;ed case. For a spatially periqdic case, a
—1,...n. Thisis a state in which firs; sites are neax,,, lengthy but straightforward calculation on the lines of this

paper and Ref9] is needed and this work is in progress. The
calculation on lines of9] would be useful for analyzing the

effect of feedback at periodically spaced sites in coupled
maps|5]. However, a more pertinent question would be as to

nextk, sites are nea)n(pz (within some tolerengeand so on.
Now we can define the following evolution rule:

Xn+1(1)=(1—e)f(x,(i))+ g[f(xn(i —1)+f(x,(i+1))] how much intuition carries over to the continuous time dy-
namical systems with feedback. The answer is not clear. We
+y(%n(1) = X(modnt prp)) (17) fgel that a reasonable part goes over. For fegdback in the

single oscillator case the analysis is strikingly similar to the

for 1si<k;, case of a mapl2]. Of course, details change. For example,

one does not need the orbit of a discrete system to have finite
torsion to be stabilized by feedback. Analysis for the coupled

. . E . .
Xnt2(1)=(1=€)Tn(1))+ E[f(xn(' DA fx(i+1))] oscillator case has not been carried out to our knowledge.

+ w(x.(i)—X 1 This work was supported in parts by grants from the Hong
70a(1) =X oan+ p2) 18 Kong Research Grants Coun€¢RGC) and the Hong Kong
for 1<i=<k,, and so on. We were able to stabilize period-2Baptist University. The author acknowledges the theory
clusters by this approach. Far=1.1 of the logistic map group MRC (lISc) for allowing the use of their computa-
f(x)=1—ax?> we could go to a target state of tional facilities.
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