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Feedback control in coupled map lattices

Prashant M. Gade
Department of Physics and Centre for Nonlinear Studies, Hong Kong Baptist University, Hong Kong, China

~Received 16 January 1998!

Recently, Paramanandaet al. @Phys. Rev. E56, 239~1997!# have reported the suppression of spatiotemporal
chaos using a feedback technique. We present analytic results for the same and compare with numerical results
presented in this work. We also suggest an improved method for stabilizing periodic solutions and achieving
target cluster states in a spatiotemporal system.@S1063-651X~98!02806-2#

PACS number~s!: 05.45.1b
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Control of spatiotemporal systems is an important a
difficult problem which has attracted attention of late. One
the methods for control was propsed by Ott, Grebogi, a
Yorke ~OGY! @1#. It requires reasonable knowlege of d
namics and is well suited for low-dimensional systems. T
other method is feedback@2,3# ~see also@4,5#! which does
not need it and is thus suitable for very large dimensio
systems.~Engineers have been using this method for qu
some time.! In dynamical systems, achieving synchroniz
tion is often referred to as control. This happens since qui
few times the synchronized state is indeed a desired state
working out the conditions for synchronization is tantamou
to the conditions for control.~Good examples from an appl
cations point of view would be Josephson junction arra
and synchronizing electrical circuits for secure communi
tion.! Apart from that, from a control theory point of view
these two problems turn out to be very similar@6#. Coupled
map lattices have been a prototypical toy model for s
tiotemporal systems. Methods which have been tried in
context include pinning which basically gives a feedback
the system from the desired orbit at periodically spaced s
@7#. Feedback has an appeal in high-dimensional systems
to its simplicity. Of late, Paramananda, Hildebrand, a
Eiswirth have studied coupled map lattice systems with fe
back and obtained some encouraging numerical results@8#.
In this work we will be presenting some analytic calculatio
along similar lines.

Let us consider a straightforward case of a single m
with feedback. The equation is of the type

xn115 f ~xn!1g~xn2xn21!. ~1!

This is a two-dimensional system which we can express
(xn11 ,xn)5F(xn ,xn21)5„f (xn)1g(xn2xn21),xn… and
one can write the Jacobian at timet as

Jt5S f 8~xt!1g 2g

1 0 D . ~2!

The eigenvalues of this matrix give the stability constrain
We will see that in a spatially extended system, also, th
constraints stay, though some more conditions come in.
the other functional form which is attempted,

xn115 f ~xn!1g~xn2XF!, ~3!

whereXF is a stable fixed point@ f (XF)5XF#, it remains a
one-dimensional system. But it is easy to see that the sta
571063-651X/98/57~6!/7309~4!/$15.00
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ity condition is simply thatu f 8(x)1gu,1. However, it is
clear that the periodic orbit solution for a period higher th
unity will not be the same as for theg50 case in the case o
Eq. ~1! or ~3!. Consequently~as also noted in@6#!, in the case
of a periodic solution with periodp, X0 ,X1 , . . . ,Xp21, the
control does not go to zero asymptotically. A simple soluti
to this problem would be to drive the system as

xn115 f ~xn!1g~xn2xn2p! ~4!

instead of Eq.~1!. Similarly, instead of Eq.~3! we can have
the evolution rule

xn115 f ~xn!1g~xn2Xr !, ~5!

wheren5kp1r , k is an integer, and 0<r<p21. The sta-
bility conditions areu) i 50

p21f 8(Xi)1gu,1. Of course, one
may choose to apply this feedback only rarely; e.g., one m
drive the system as

xn115 f ~xn!1g~xn2Xr !d r ,0 . ~6!

Here the stability condition changes and is given byu f 8(X0

1g)) i 51
p21f 8(Xi)u,1. Thus one may choose to apply pertu

bations only at those points on the orbit which have stron
expanding eigenvalues. Various states, which are on
same orbit but differ in phase, do not remain equivalent
this kind of driving. Apart from the fact that control goes
zero asymptotically, one more advantage is that the st
lized states are the periodic solutions of the functionf and
not the altered states. The strategy in Eqs.~5! and ~6! can
help in getting rid of clustered states~which will be defined
later! in coupled map lattices. One more interesting point
be noted is that the above stability conditions do not ens
that if a state were stable without feedback, it would s
stable.~This prompts another possibility of using feedback
increase chaos.!

Now let us consider the coupled map lattice system.
us consider the local feedback

xn11~ i !5~12e! f „xn~ i !…1
e

2
@ f „xn~ i 21!…1 f „xn~ i 11!…#

1gS xn~ i !2
1

N(
j 51

N

xn21~ j !D . ~7!

This is a 2N-dimensional system. We can write (Xt11 ,Xt)
5G(Xt ,Xt21) where Xt5„xt(1),xt(2), . . . ,xt(N)…. The
JacobianJt at time t is given by
7309 © 1998 The American Physical Society
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S At 2
g

N
1N

I N 0N

D , ~8!

where0N is anN3N matrix with all entries 0.1N is anN-dimensional matrix with all entries 1. The matrixAt is given by

S ~12e! f 8„xt~1!…1g e/2f 8„xt~2!… 0 . . . e/2f 8„xt~N!…

e/2f 8„xt~1!… ~12e! f 8„xt~2!…1g e/2f 8„xt~3!… 0

A A

0 0 0 . . . e/2f 8„xt~N!…

e/2f 8„xt~1!… 0 0 . . . ~12e! f 8„xt~N!…1g

D . ~9!
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We assume periodic boundary conditions@10#. It is easy to
see that for the homogeneous solution the matrixAt is a
circulant matrix@9,11#. It can be diagonalized by a Fourie
matrix F, the entries of which are independent of the mat
being diagonalized. We also note that the matrix1N is also
circulant and thus diagonalizable by the same matrix. T
identity matrix remains unaltered under a similarity transf
mation under the Fourier matrix and so is the case with0N .
Thus the above matrix has fourN3N blocks, all of which
can be diagonalized by the Fourier matrix. Let us defineUt
5G21JtG where

G5S F 0

0 F D . ~10!

It is easy to see that

U5S Ad Bd

I N 0 D , ~11!

where each of the blocks is anN-dimensional diagonal ma
trix. Ad has elements Ad( l ,l )5(12e) f 8(xt)1g
1e cos(ul)f8(xt) whereu l52p l /N, l 51, . . . ,N. The matrix
Bd has elementsBd(N,N)52g, Bd( i ,i )50, i 51,2, . . . ,N
21. By a simple rearrangement of variables

„xt~1!,xt~2!, . . . ,xt~N!,xt21~1!,xt21~2!, . . . ,xt21~N!…

→„xt~1!,xt21~1!,xt~2!,xt21~2!, . . . ,xt~N!,xt21~N!…

the above matrix can be cast in a block diagonal form oN
blocks of 232 matrices. The required similarity transform
tion is easy to derive. Thus

Ut[S L1~ t ! 0 . . . 0

0 L2~ t ! . . . 0

A A

0 0 . . . LN~ t !

D , ~12!

where

Li~ t !5S Ad~ i ,i ! Bd~ i ,i !

1 0 D . ~13!
e
-

We denote byLi the blocks corresponding to linearizatio
around the fixed point. The stability conditions will be give
by the eigenvalues of each of the blocks. It is interesting t
LN is the stability matrix for a single map. Thus if a sing
map could not be stabilized by feedback, the lattice can
be stabilized by feedback. In all other blocks (iÞN),
Bd( i ,i )50. Thus the stability conditions are given by th
eigenvalues of the matrixAt . The eigenvalues ofAt are
bounded between (122e) f 8(xt)1g and f 8(xt)1g. Thus
for a fixed point the conditions are straightforward and
genvalues of a single map with feedback linearized aroun
fixed point should be within the unit circle in the comple
plane andu(122e) f 8(xF)1gu,1 andu f 8(xF)1gu,1. One
can easily check that the value at which stabilization
achieved by Paramanandaet al. is within the allowed range
of gP(0.87, . . . ,1) for e50.08 andf (x)5121.81x2.

Let us try to understand the effect of global feedback. I
defined in@6# as

xn11~ i !5~12e! f „xn~ i !…1
e

2
@ f „xn~ i 21!…1 f „xn~ i 11!…#

1gS 1

N(
j 51

N

xn~ j !2
1

N(
j 51

N

xn21~ j !D . ~14!

In this case the analysis can be done in a similar way to
above since the essential symmetries which faciliated the
duction of the problem of diagonalizing the 2N32N matrix
to N matrices of size 2 are still there. It is easy to check t
in this caseAd(N,N)5 f 8„x(t)…1g which is the same as in
the case of local feedback. However,Ad( l ,l )5(1
2e) f 8(xt)1e f 8(xt) cos(ul) ( l 51, . . . ,N21) and they do
not depend ong. Bd( i ,i )’s ( i 51, . . . ,N) remain unchanged
Thus there is no possibility of stabilizing the unstable fix
point with this feedback since one of the eigenvalues~in the
large-N limit ! will approach f 8(xF) for the synchronized
fixed point. Thus it is not a surprise that Paramanndaet al.
are not able to stabilize the homogeous state starting w
arbitrary initial conditions. However, they do the following
They reset the parameter to get a system in a synchron
state. Later they reset the parameter back to the old value
add control and say that applying control leads to a synch
nized state. The reason why this works is that the evolut
equations are such that if you start the system in



o
re
n
al
h
b
ta
r,
un
th

in

e
e
s
u
e
n
h
sy
te
y

th

im
ite
th

f

e
e

ns
u

be
th

a
to

he

e

ith
the

l-

.
ct

e-
tors.
iod

and
t to

ne
red
ns

ster
y to

n-

57 7311BRIEF REPORTS
synchronized state, the system will stay synchronized. N
the question is why it goes to a fixed point which was p
viously unstable. The mode under consideration now is o
the homogeneous mode. Stability of this mode essenti
means that a single map can be stabilized by feedback. T
if an unstable fixed point of a single map can be stabilized
feedback, one could go to a homogeneous fixed point s
starting from the synchronized initial condition. Howeve
one should note that starting with a small disturbance aro
the homogeneous state it will not be possible to stabilize
system to a homogeneous unstable fixed point. Since a s
system can be stabilized with feedback forg
P(0.43, . . . ,1) ~for a51.81), one can observe a homogen
neous unstable fixed point in this regime with synchroniz
initial conditions which is possible in numerical simulation

Now an interesting observation can be made. This co
be done because theNth block has a very different structur
from the rest of the blocks. This gives a possibility that o
of the eigenvalues can be well separated from the rest. T
it may even be possible to have synchronous chaos in
tems with feedback if one starts with a synchronized sta

The above analysis for a synchronized state can easil
extended to the case when feedback is from a statep time
steps before the current time step. Let the evolution be of
type

xn11~ i !5~12e! f „xn~ i !…1
e

2
[ f ~xn~ i 21!1 f „xn~ i 11!…#

1gS xn~ i !2
1

N(
j 51

N

xn2p~ j !D . ~15!

The stability conditions for a synchronized state can be s
ply derived using a similar technique as above. We will wr
the final result. The Jacobian in the above case is
pN3pN matrix which can be reduced toN matrices of size
p3p in block diagonal form as Eq.~12! except that each o
the blocks now is ap3p matrix given by

Li~ t !5S Ad~ i ,i ! 0 . . . 0 Bd~ i ,i !

1 0 . . . 0 0

0 1 . . . 0 0

A A

0 0 . . . 1 0

D . ~16!

Linearization is around the homogeneous state at timt.
Thus the stability conditions will be given by the eigenvalu
of theN product matrices given byLi5P i 51

p Li(t). This can
be done since the above form is obtained by similarity tra
formations which do not depend on individual matrices b
their symmetries. It is interesting thatLN is the stability ma-
trix for a single map. Thus if a single map could not
stabilized by feedback, the lattice cannot be stabilized by
feedback. The periods stabilized could bep and its harmon-
ics. For example, applying feedback after ten iterates m
result in periods 1, 2, 5, or 10 if the control signal goes
zero. If a fixed point, i.e., period unity, is stabilized, then t
conditions are very simple. In all the blocks other thanLN ,
Bd( i ,i )50. Thus the stability conditions are given by th
eigenvalues of the matrixAd . The eigenvalues ofAd at time
w
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t are bounded between (122e) f 8(xt)1g and f 8(xt)1g.
Thus the conditions are that eigenvalues of a single map w
feedback linearized around fixed point should be within
unit circle in the complex plane and thatu(122e) f 8(xF)
1gu,1 andu f 8(xF)1gu,1. For higher periods, the stabi
ity condition will be that eigenvalues of matricesP t51

p Li(t)
be in the unit circle fori 51, . . . ,N as explained above
SinceBd( i ,i )50 for iÞN, the eigenvalues are just a produ
of Ad( i ,i )’s at successive times for blocks other than theNth
block.

In the Ref.@6#, other structures apart from the homog
neous state which are observed are clustered attrac
These are unsynchronized periodic attractors with per
other than unity. There are two points to be made.~a! The
clustered state depends entirely on the initial conditions
with a simple evolution rule as above one cannot target i
a desired clustered state.~b! Control does not go to zero
asymptotically.

Now if one wants to have a control mechanism, o
should be able to suggest a way in which a desired cluste
state can be achieved starting with random initial conditio
and also a mechanism to switch between different clu
states. The physical origin of the clustered states is eas

FIG. 1. ~a! The superposition of the asymptotic state of 20 ra
dom initial conditions controlled to the„10(0),10(1),10(0),10(1)…
state.~b! Similar figure for control to the„15(0),15(1)… state.
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see. In the case of a single map, the dynamical evolu
leads to states periodic with periodp, say,
X0 ,X1 , . . . ,Xp21. For zero couplingpN states are asymp
totically possible for an assembly ofN maps~actually,pN21

after accounting for phase degeneracy!. Of course, for a non-
zero coupling, allpN states may neither exist nor be stab
But still it is reasonable to argue that a large number
accesible states is possible. Thus unless the feedback is
a certain phase and breaks the symmetry, the systems
not get synchronized. Now if one is targeting to get the cl
tered states and one knows the local dynamics, a stra
similar to Eq. ~5! can be tried. We drive sites in differen
clusters with different phase but within the cluster the ph
is maintained. One expects a desired cluster state to
achieved this way if it exists and is stable~with feedback!.
Let us denoteC5„k1(p1),k2(p2), . . . ,kn(pn)… as a cluster
state. wherek11k21•••1kn5N and 0<pi<p21 for i
51, . . . ,n. This is a state in which firstk1 sites are nearXp1

,

nextk2 sites are nearXp2
~within some tolerence!, and so on.

Now we can define the following evolution rule:

xn11~ i !5~12e! f „xn~ i !…1
e

2
@ f „xn~ i 21)…1 f „xn~ i 11!…#

1g„xn~ i !2X
„mod~n1p1,p!…… ~17!

for 1< i<k1,

xn11~ i !5~12e! f „xn~ i !…1
e

2
@ f ~xn~ i 21!1 f „xn~ i 11!…#

1g„xn~ i !2X
„mod~n1p2,p!…… ~18!

for 1< i<k2, and so on. We were able to stabilize period
clusters by this approach. Fora51.1 of the logistic map
f (x)512ax2 we could go to a target state ofC
v.

e

n

.
f
ith
ill
-
gy

e
be

5„15(0),15(1)…; i.e., i 51, . . . ,k1515 are in one cluster
and i 5k111, . . . ,k2530 are in the other cluster. We ap
plied g50.1, e50.08. Similarly we could stabilize the
„10(0),10(1),10(0),10(1)… cluster for similar conditions. Of
course, with high periods and states very near each o
targeting to a desired state is difficult. Figure 1~a! shows a
superposition of asymptotic states of 20 random initial co
ditions targeted to the„10(0),10(1),10(0),10(1)… state. Fig-
ure 1~b! shows the superposition of 20 random initial cond
tions targeted to the„15(0),15(1)… state.

The procedure stated above can obviously be used
coupled Henon maps or coupled Lozi maps or coupled a
preserving maps which have an evolution of the typext11

5F(xt ,xt21). The whole calculation also goes over
coupled oscillators~with inertia!. The above calculation is
for a synchronized case. For a spatially periodic case
lengthy but straightforward calculation on the lines of th
paper and Ref.@9# is needed and this work is in progress. T
calculation on lines of@9# would be useful for analyzing the
effect of feedback at periodically spaced sites in coup
maps@5#. However, a more pertinent question would be as
how much intuition carries over to the continuous time d
namical systems with feedback. The answer is not clear.
feel that a reasonable part goes over. For feedback in
single oscillator case the analysis is strikingly similar to t
case of a map@12#. Of course, details change. For examp
one does not need the orbit of a discrete system to have fi
torsion to be stabilized by feedback. Analysis for the coup
oscillator case has not been carried out to our knowledg
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